

Predicting Human Memory Performance through Multi-Voxel Pattern Analysis

THE UNIVERSITY of EDINBURGH

1. Introduction

- Human declarative memory is a complex phenomenon that engages various cognitive processes and a multitude of distinct neural systems.
- Although a number of brain areas critical to memory have been identified, the exact neural correlates and brain activity patterns that give rise to it are not very well understood.
- **Aims**: We applied several Multi-Voxel Pattern Analysis (MVPA) techniques^[1] to investigate if we can reliably predict (i) free recall, (ii) recognition, (iii) emotional valences, (iv) arousal, and (v) memorability of pictures.

2. Experimental Design

Analyses were performed on an existing dataset obtained from a Basel fMRI study^[2]. Here, we used a subsample of this dataset containing information from 100 subjects.

I. Picture Encoding & Rating Task

II. Free Picture Recall Task

Participants were asked to write down a short description (a few words) of the previously seen pictures.

III. Picture Recognition Task

Following a short delay, participants were repositioned in the MR scanner and conducted a picture recognition task that lasted 20 minutes.

Minke R.A. Pater^{1,2}, Thomas A. Dorfer^{3,4}, Leo Gschwind^{5,6}, David Coynel^{5,6}, Andreas Papassotiropoulos^{5,6}, Dominique J. de Quervain^{5,6}, Gediminas Luksys^{1,2}

¹ Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom;² Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom ³ Systems Neuroscience Group, Queensland Institue for Medical Research, Brisbane, Australia; ⁴ Faculty of Medicine, University of Queensland, Brisbane Australia ⁵ Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland; ⁶ Faculty of Psychology, University of Basel, Basel, Switzerland

3. MVPA Approaches

I. "Top" Voxel Approach

- Extraction of beta values from most significant 'top' voxels (one-way ANO) for valences, arousal, and memorability; two-sample t-tests for free recall and recognition memory phenotypes), with an exclusion radius around the selected voxels to ensure broader representation.
- Main classification algorithm: Support Vector Machines

4. Individual Predictions

Recognition

Prediction of the recognition phenotype yielded no significant results.

	Prediction domains	Conditions
VA	Free Recall	Remembered vs. not remembered
	Recognition Memory	Old vs. familiar-new
е	Emotional Valences	Negative vs. neutral vs. positive
	Arousal	Low vs. medium vs. high
	Memorability	Weak vs. medium vs. strong

II. Searchlight-based MVPA

• Using a sliding window containing a spherical subset ('searchlights') of a selected radius centered around each voxel.

• The average classification accuracy was then assigned to the center voxel (depicted in black) in each sphere. This yielded whole-brain accuracy maps.

Principal/Independent Component Analyses). Furthermore, we will use masks derived from Neurosynth database[for selection of voxels. Finally, we will use the full fMRI dataset containing data of ~1000 participants for prediction. References

Havnes, J.D. et al. (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives, Neuron, 257-27 Luksys, G.I., et al. (2015). Computational dissection of human episodic memory reveals mental process-specific genetic profiles. Proc Natl Acad Sci U S A 112, E4939-4948 Lang, P.J., et al. (1997). International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual. Gainesville: University of Florida 4. Yarkoni, T. et al. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 665-670 Correspondencing authors: Minke R. A. Pater (minke.pater@hotmail.com); Thomas A. Dorfer (thomas.dorfer@qimrberghofer.edu.au); Gediminas Luksys (gedi.luksys@ed.ac.uk)

Predictive brain areas	Voxel count
Lateral Occipital Cortex, inf.	19
Temporal Occipital Fusiform	17
Intracalcarine Cortex	11
Occipital Fusiform Gyrus	9
Precuneous Cortex	8

Predictive brain areas	Voxel count
Intracalcarine Cortex	32
Lingual Gyrus	25
Precuneous Cortex	18
Paracingulate Gyrus	17
Supracalcarine Cortex	15