fMRI-based prediction models for free recall, recognition memory,
emotional valences, arousal, and memorability of pictures
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/ Introduction \ Materials & Methods

Human declarative memory is a complex phenomenon that engages various cognitive The participants of this study performed picture memory tasks in a MAGNETOM Verio 3-
processes and a multitude of distinct neural systems. Although a number of brain areas T whole-body MR unit (Luksys et al., 2015). Stimuli included a total number of 72
critical to memory have been identified, the exact neural correlates and brain activity patterns pictures — 24 pictures for each valence [positive, neutral, and negative (Fig. 1A)], which
that give rise to it are not very well understood. In this study, we aim to predict (i) free recall, were selected from the International Affective Picture System (IAPS, Lang et al, 1997).
(ii) emotional valences, (iii) arousal, and (iv) memorability of pictures based on fMRI The participants performed picture learning and free recall, and after an 80 min delay,
activations during encoding using multi-voxel pattern analysis (MVPA) techniques, which picture recognition, where presented with previously shown or new pictures, they had
include searchlight analysis and a customized ‘top’ voxel approach for voxel selection and to rate picture familiarity (previously seen vs. familiar vs. new).

support vector machines (SVM) and artificial neural networks for classification. In addition,

using the searchlight approach, we employ a region-of-interest (ROI) analysis to identify the

{ain areas that are the most predictive of our phenotypes of interest. /

Results A) Pictures associated with positive, neutral, and negative valences. B) Center
voxel (black) surrounded by neighboring voxels (blue).

In this study, we used MVPA techniques to predict individual phenotypes (i.e. arousal, To reduce data dimensionality, we extracted the beta values from the most significant
valences, and free recall), which are based on individual ratings for each picture and (‘top’) voxels (using one-way ANOVA for valences, arousal, and memorability and two-
picture-based phenotypes (i.e. IAPS valences and memorability), which are based on sample t-test for free recall and recognition memory phenotypes) with various exclusion
average ratings across individuals for each picture. We also attempted the prediction of radii around each selected voxel (Fig. 1B). In a different subsample of the population
recognition memory using encoding fMRI; however, results (not shown here) were Subsequently, SVMs with Gaussian kernels as well as various neural network
merely at chance level. S5 P<0.001 architectures were used to classify the following conditions:
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/ Discussion & Future Work / \

This study predicted emotional valences, arousal, and memorability of pictures with References
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@koni et al., 2011) show great promise of achieving higher prediction accuracies. / \ /
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